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’Iho-parameter expansions for quantum spin systems 

J Oitmaat and Zheng Weihong$ 
School of Physics. m e  University of New South wdles, PO Box 1, Kensington, NSW 
2033, Australia 

Received 24 March 1992 

Abstinct As an axtension of our one-parameter series apansion, a No-parameter 
apansion technique for quantum spin rystems is dweioped. As examples of the method 
we present results for three different models on the square lattice: the (I+l)-dimensional 
king model with an alernal magnetic field, and the Heisenberg antiferromagnet with 
both an atemal staggered parallel magnelic field and an external perpendicular magnetic 
field. Analysis of the resulting series is also presented. 

I. Introduction 

There is currently a great deal of interest in quantum spin systems, such as the 
Heisenberg antiferromagnet, for many reasons, not least of which is the possible 
relevance to the mechanism of high-T, superconductivity in the cuprates. 

One important method for studying such systems is via long perturbation series, 
which can be most efficiently derived by the linked-cluster method, a technique first 
proposed by Nickel (1980), further elaborated by Marland (1981), and reviewed 
recently by He ef a1 (19%). A very similar method seems to have been discovered 
independently by Singh and co-workers (Singh er a1 1988, Gelfand ef al 1990). During 
the past year we have successfully applied this method to study the Ising model 
(Oitmaa ef a1 1991), the Heisenberg antiferromagnet (Zheng ef al 1991), the X Y  
model (Hamer ef a1 1991), the three-state Potts model (Hamer ef a1 1992a), and the 
U(l) and SU(2) gauge models in 2+1 dimensions (Hamer et al 1992b). 

In the present work we extend this technique to Hamiltonians which contain 
two perturbing terms and two parameters. Obvious candidate systems include 
antiferromagnets with further-neighbour interactions, where it has been suggested that 
frustration can lead to a new kind of ground state, a ‘quantum spin liquid’. We intend 
to investigate such systems in further work. Here as illustrations of our technique, 

Ising model with an external magnetic field, the Heisenberg antiferromagnet with an 
external staggered parallel magnetic field and the Heisenberg antiferromagnet with 
an external perpendicular magnetic field. The analysis of the resulting series is also 
presented. 

The plan of this paper is as follows: in section 2 the theory of the two-parameter 
expansion is reviewed, the applications are presented in section 3 and section 4 is 
devoted to a summary and discussion. 

t E-mail atja@nRvt.phys.unsw.edu.au 
t E-mail zwh@nmt.phys.unsw.edu.au 
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2. Theory 

We mnsider a lattice Hamiltonian of the form: 

J Oitmaa and Zheng Weihong 

H =  Hu+ zV, + YV, (1) 
and choose a basis in which Hu is diagonal with ground-state energy ,Tu," and 
eigenvector The terms VI and V, are to be treated as perturbations, with 
x and y as the expansion parameters. 

of H and its corresponding energy Eo 
in the form 

We seek to expand the ground state 

. .  
IC'U) = x'YJl+i,;) (2) 

i,j=U 

If we also want to calculate other ground-stz properties, such as the magnetization 
and susceptibility, we need to include an extra term zV, representing the magnetic 
field interaction, so the full Hamiltonian becomes 

H = Hu + xV, + yV2 + zV3. (4) 
The expansion in z is usually needed to order z2, so we can formally expand the 
ground state /Uu) and its energy Eu for the above Hamiltonian in the following form: 

(5) 
1 2 ,I 

IC'U)  = ZiYj(I$i,j) + ZI$l,j) + p I$i,j) + ...) 
i,j=U 
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where Et;{=, means a sum over k = 0,1,. . . ,i, and 1 = 0,1,. . . , j except the 
case of k = i and 1 = j simultaneously. The initial conditions for above recurrence 
relations are 

-%,U = (+u,u I 4l+u,u) / (+U," I +u,u) 

(H" - E U , " ) M I , U )  = GJ,"l+'UU) - 4l&,") 

E&l = 2WU,Ul(4 - ~;.u)l+b")/(+u,uliu,u) 

(Hu - Ell,u)I+&l) = 2(E;,u - v,)l+L,u) + ~;ul+u,u). 

(12) 

If we have complete knowledge of the ground state Iqu) up to order ( i , j ) ,  that 
is, and I+&) (k = 0,1,. . . ,i, and 1 = 0,1,. . . ,j), we can define 

I*"(i,j)) = lqi,j) + + fz'lQy,j) + " '  (13) 

where 

i,j i,j i,j 

IQi,j) = zkYlld'k,l)  lq;,j) = zkY'ld'!z,l) l*i:j) = z k Y ' l % , , ) .  (I4) 
k,I=U k,l=U , , I d  

Then 

(15) 

(16) 

1 2 0 
( q u ( i , j ) l Q u ( i , ~ ' ) )  = Qi,j + zQ:,j + 72 Qi,j + 0 ( z 3 )  

( q " ( i , j ) i ( ~ ~ +  zv, + y ~ ) ~ ~ o ( i , j ) )  = + ZP:,~ + ;z~P,!:~ + 0 ( z 3 )  

where 

Qi.j = (*i,jl*i,j) 

Q:,j = (*i,jlq:,j) + (Q:,jl"i,j) 

Pi,j = (Qi , j l~U+~Vl+Yvzl* i , j )  

P!'. 111 = (*::jlH"+ zv, + Y v , l Q i , j )  + (*i,jIH U + zv, + Y v , P q j )  

(17) 

Q:j = ('Z;,jl'Z'y,j) + (*y,jl'J'i,j) +2(Q:,jIq:,j) 

P! :.I ' = (~':,jIHu+Iv,+Yv,I~i,j)+(~i,jlHu+ =vi + Y&l*':,j)+ (*i,j lv3lQi,j)(18) 

+ 2(Y:,jIHu+zv, + YKIQ;,j) +2(Q:,jlv3lQi,j) + 2wi , j lV3lq j ) .  

It can be shown that a knowledge of the ground-state eigenvector up to order 
( i , j )  is sufficient to derive the ground-state energy terms E,,,, EL,, and E;,, up to 
order ( i ,2j+1) and (2i+l , j )  (denote these orders as A). These quantities E,,,, 
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E i , f  and Er,f can be obtained by comparing the coefficients of z k y y '  in the following 
equations: 

J Oitmaa and Zheng Weihong 

pi". = x ( Q ? . E k , f +  Qi , jE; , f+2QI, jEk, l ) z  k f  Y .  
13 -3 

A 

As with our previous work with one-parameter expansions, to proceed with the 

(a) a list of all clusters which give contributions to the series, up to the order 

(b) the embedding constants of the clusters for the lattice under consideration; 
(c) for each cluster, a list of subclusters and corresponding embedding constants. 
We have developed an efficient algorithm for generating the above data. These 

derivation of series by this method it is necessary to have the following data: 

required; 

have been reviewed by He et a1 (1990), and will not be repeated here. 

3. Applications 

We present here some preliminary results, using as test cases the following quantum 
spin systems on the square lattice. 

3.1. (Z+I)D Ising model with an atemal magnetic fe ld  

The system can be described by the following Hamiltonian: 

where the up are Pauli spin operators acting on a two-state spin variable at site i of 
the lattice, (ij) denotes nearest-neighbour pairs, X corresponds to the temperature 
in the Euclidean formulation and y is the magnetic field variable. We treat the 
first term of H as the unperturbed Hamiltonian, and the second and third terms as 
perturbations. The resulting series for the ground-state energy Eo = CE,,,zmy" 
(where z = Xz) is listed in table 1. The calculations involve a list of all linked clusters 
of up to 12 sites, together with their low-temperature (strong) lattice constants and 
data on their subclusters. This list of 3289 clusters was obtained previously in our 
study of the (2tl)o king model in zero external field (Oitmaa et a[ 1991). This 
information can be supplied on request. 

The series can then be expressed in two ways. 
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'hbk 1. Series mefficients for the groundalate energy per site Eo of king model with 
atemal magnetic field. Coefficients of zmy" are listed (I = A'). 

m E,,o 
0 -O.mWOOOWOWE+O 
1 -5.mWOOOWOWE-1 
2 -4.166666666667E - 2 
3 -1.041666h66667E - 2 
4 -1.309317129630E - 2 

6 -1.078810144599E - 2 
7 -4.4758W845599E - 3 
8 -1.494260185289E - 2 
9 -5.372145505638E - 3 

10 -2.M22.55294622E - 2 
11 -1.371351223876E - 2 
12 -2.859105512WlE - 2 

r C C . I P C ~ " I ~ , ' C C C  3 ., -_I._IIY_II~I&I">"L - J 

I . ~ X I I I I I I I I I E -  I -3.032407407407~ - 1 
1.467013888889E - I -5423177083333E - 1 

3.481680145249E - I -3.734077675746E T 0 
4.1685M552038L - I -6.33509293222YE T 0 
7.19440(10((1M7YE - I -I.2121514741508 T 1 
8.958967252956E - I -2.048224941347E T I 
1.53UO30379293E T 0 -3.786158505WE -r 1 

3.46738008U354L f 0 -1.174786762172E + 2 
2 . 1 5 1 1 ~ 4 5 1 6 m  + n -6.s7~471m129ri + I 

3.792438271605E - 1 
1.230426552855E + 0 
3.727450222774E + 0 

2.295316498583E + 1 
5.066441968399E + 1 
1.1486YY255974E + 2 
2.398005897024E + 2 
5.0818M408954E + 2 
I.O%8?JX5178OE + 3 

n 1 0 * n C , C n " l " , C  I " 
i._-_II_I".L*lL T Y 

2. im841913~73~ + 3 

m &,4 Ems Em,6 Em,i 
0 0.WOWOQ)MWEtO O.WWOOOWOWE+O O.WW000000WEtO O.WOOWOWOOOE+O 
1 -3.125WWWOOOE-2 
2 -3.W583847737E - 1 
3 -2.125165272151E + 0 
4 -9.234462408221E + 0 

6 -9.920667557473E + 1 
7 -2.757928869746E + 2 

5 -?.!46??63?LCh4E + 1 

n - 7 . m m 9 2 7 3 2 2 ~  + 2 

3.90625GUXWOE - 3 
2.610138269700E - 1 
4.572212627686E + 0 
5.0028W366101E + 1 

2.279074455283E + 3 

5.158422914301E + 4 

? . 7 4 a s i n w s ~  + 2 

1.14773in93578~ + 4 

9 -1.872326590014E + 3 l.OW575763206E + 4 -5.206384503210E + 4 2.079435413737E + 5 
10 -4.59567139U120E + 3 3.116928N9219E + 4 -1.697015478242E + 5 7.756022590964E + 5 
11 -1.08260286256OE + 4  8.4145950103248 + 4 -5.218180854791E + 5 2.70255038264E + 6 
12 -2.493401656350E + 4 2.192337452555E + 5 -1.531816385121E + 6 8.904246761313E + 6 

m Em,e Em,9  E,JQ %,it 

0 O.OWWOMXY)(WIE+O O.WWOOOWOWE+O O.MW)(XXXIOOWOE+O O.WOOOWWOM)E+O 
1 -1.953125aKaaOE - 3 9.765625W000aE - 4 -4.88281250oooOE - 4 2.441406250000E - 4 
2 -2.047709367300E - 1 1.556383067783E - I -1.153962409772E - 1 8.388883513064E - 2 
3 -4,9571444201528 + O  5.080141536067E + 0 -4,9749062135078 + 0 4.69369334091YE + 0 
4 -7.083262710832E + 1 9.334467041799E + 1 -1.16021842W97E + 2 1.3740935371638 + 2 
5 -6.665617239910E + 2 1.088394069168E f 3 -1.6570944071258 + 3 2.379888548946E + 3 
6 -4.93009946449'1E + 3 9.703742890178E + 3 -1.7657610572808 + 4 3.007747827033E + 4 
7 -2.960211732695E + 4 6,8878147935988 + 4 -1.470455046923E + 5 2.918596W2356E + 5 
8 -1.554409370877E + 5 4.19382251996E + 5 -1.034891174457E + 6 2.358382495796E + 6 
9 -7.231288035628E + 5 2.241294288540E + 6 -6.303302223456E + 6 1.631354892338E + 7 

10 -3.071664076658E + 6 1.07929483262YE + 7 -3.426329085903E + 7 9.969740428092E + 7 
11 -1.207350746500E + 7 4.765667728803E + 7 -1.693068360588E + 8 5.4934607461103E + 8 
12 -4.447904988124E + 7 1.956216913801E + 8 -7.7l8ow234150E + 8 2.7724fi702225E + 9 

3.1.1. x grouping. We write 

= C e m ( y ) Z m  
m 

where the e , [ ! )  are available as power series through eI2 from the horizontal 
sequences in table 1. In fact, it is simple to identify closed form expressions for 
e,(y), at least for small m, as 
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e4(y) = (-3620+24(n2y+55055y2+3313y3-53738y4-34172ys-3144y6 

+ 1440y7)/[(Y+ 2 ) ' ( ~  f 1)(2y + 3)'(3y + 4)'(4y + S ) ] .  

These results can also be obtained by combining the first and third terms in (20) as the 
unperturbed Hamiltonian with V = A xi  mr as the perturbation. Thus e,(y) will 
have poles at values of y corresponding to energy differences between unperturbed 
states. 

3.1.2. y grouping. We write 

The series Eo(=) ,  Cl(z) ,  &2(z) are respectively the ground-state energy, 
magnetization, and susceptibility in zero field, which agree with our previous results 
(Oitmaa er a1 1991). The other En(z)  are series for higher field derivatives: 

1 anE" €,,(I)= lim - - 
p u n !  ( a y . )  ' 

(24) 

Scaling theory (Stanley 1971) predicts that these should all diverge at the physical 
critical point, according to 

c, - (z, - I ) - a .  (25) 

with a,, = y + (n - 2)A, where A is the gap exponent, which for the three- 
dimensional king model in the Euclidean formulation is A = 1.563(3) (Essam and 
Hunter 1968). Our previous estimate for I, (He er a1 1990, Oitmaa er a1 1991) is 
zc 0.579 17( 14). 

We have analysed the series for & m ( ~ )  (n > 3) by standard Dlog Pad6 
approximants (Guttmann 1989). ?he analysis indicates that &,,(z) has a zero near 
the origin on the negative real z axis (i.e. imaginary A) 

E,,(*) = (z; - z)Fn(z) (26) 

and this zero completely masks the physical singularity. In table 2 we give our 
estimates of the position of this zero for different n. The Zero approaches the origin 
as n -+ CO. We have sought, without success, to find a simple formula for z;. We do 
not understand its origin or possible significance. Such behaviour also occurs in the 
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Tpbk 2. Estimates of the zero point z: and the physical critical index a, for ]Sing 
model with external magnelic field. Estimates of the zero point zZ2 and singulariv 
amplitudes A,, defined by (31), lor the Heisenberg antiferromagnet wilh a staggered 
parallel magnetic field. Note the wry high precision obtained for 2; for larger values 
of n. 

lsing model Heisenberg antifemmagnet 
with an external magnetic field with a staggered parallel magnetic field 

4 -0.1429(1) - 0.089(6) 
5 -0.070086(2) 5.9(9) -0.195(10) 0.15(3) 
6 -0.037303252(4) 7.9(8) -O.W78( 10) - O X (  10) 
7 -0.021347065(2) 9.2(10) -0.05370(3) 0.4(ZJ 
8 -0.0129118372(5) 11.1(8) -0.031257(3) 
9 -O.W81442518(6) 130) -0.0189613( 10) 

_" in =n m ~ m a ~ l i u i d i  

11 -0.(1035446108572(5) 17(4) -O.W756553(5) 
1 < n ,  =S.0!!....(2) 
--,--I 

low-temperature series for the Euclidean Ising model but, to our howledge, has not 
previously been remarked upon. 

In order to locate the physical critical point E,,  we must firstly remove the above 
zero p in t .  This can be done by dividing the original series by E:, - E or by adding a 
constant to the original series, although neither procedure is entirely satisfactoly. The 
resulting series show the physical singularity at zC but with poor precision. Assuming 
the previous value zC = 0.57917( 14) we obtain estimates of the exponent a, which 
are also in table 2 These values have large uncertainty but are consistent with the 
scaling theory. 

3.2. Spin- 

The system can be described by the following Hamiltonian: 

Heisenberg antiferromagnet with evtemal staggered parallel magnetic je ld  

where the lattice has been divided into two sublattices A and B, and the limit E = 1 
corresponds to the the isotropic Heisenberg model with staggered magnetic field. We 
have carried out the expansion of the ground-state energy Eu up to order (14, l l ) .  
The resulting series for the ground-state energy E, = E,,,zmyn are listed in 
table 3. The calculations involve a list of 11 131 linked clusters of up to 14 sites, ... I.:-& -L.~:..-A ..-.... : -..- 1..  IT.^..^ ", -I Inn*\ 
Wll lCl ,  WG1T ""LIIIIG" pILi"L""JIy ( L l r c r g  C. ut "71,. 

The series can be analysed in a similar way as the series for the Ising model in 
subsection 3.1 above. 

3.2.1. I grouping. We write 

with the e,(y) available as power series through e,4 from the horizontal sequences 
in table 3. As before, we can find the exact expressions for e m ( y )  up to order m = 6 
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lhbk 3. Series mellicienls for Ihe ground-state energy per sire EO of the Heisenberg 
antifemmagnet with an external staggered parallel magnetic field. Coefficients of z m y "  
BTC listed. 

m Em,o E".,l Em!2 Em,] 
0 -5.MMYMWOOWE - 1 -S.MYX)(YXYMWOE - 1 O.MOOOOWOWOE+fl 0.WOOOOWOW(1E+ 0 
2 -1.666666666667E - 1 1 . l l l l l l l l l l l l E  - 1 -7.4074074074078 - 2 4.928271604938E - 2 

14 -1.115886548801E + 0 5.283429037504E + 0 -2.1775727932488 + 1 8.005194275760E + 1 

m Em8 Em,¶ Em,io Em,n 
0 O.-E+O O.-E+O O.WWWWWOE+O O.OWOOOWflMlOE+O 
2 -6SO3073718437E - 3 4,3353824789588 - 3 -2.8Y0254985972E - 3 1.92683667315E - 3 
4 -2.79178Pn3575YE - I 2.92828178557RE - I -3 IK16406541334t - I 3 U393615225r4E - I 
6 -2.M3651773YN)E + 0 3.807UU53S328E T 0 -5.2534841YUL5F. T 0 7.00962178696E + 0 
8 -1.302903tY19482E + I 2.4U1580703IUXI: + I -4.1841137559705E s I 6.Y66786hlRX65E T I 

I O  -4.3425799Y62448 + I 9.7M89Y411RNIYt T I -2.MXOR414322YF. + 2 4.1109R022Y1176E T 2 
12 -1.162693Y875468 + 2 3.OY57U28741117E + 2 -7 69553014337dR + 2 1.8033~351Y81E T 3 
L. -'.,","L I 1 1 * 1 , 0 - 1 ~  T . "..wY"-, I I I.,L I " -&,-,6,,7#%,,",L i : C.:M!7':::::::!L + ?, 1 "  _I ' .7",,<,?A?,O?C I - O , I " > ' O ~ , , I I I , ~  ? _I I""'L,O'<U".1T 

as follows: 

eu(Y) = -(Y + 1)/2 

3.2.2. y grouping. We write 

E" = p d 4 Y "  
n 
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where the &,(I) are available as power series through d4 from the columns in 
table 3. Note that only even powers of I occur. The series &(I), &,(I), E,(z )  
are respectively the series for the ground-state energy, staggered magnetization and 
staggered parallel susceptibility in zero field, and agree with our previous results 
(Zheng el a1 1991). 

The critical point here k I = 1. Spin-wave theory (Zheng et a1 1991) predicts the 
asymptotic behaviour 

n 2 2. (31) 2 312-n f,(x) - A,(1- ) 

Analysis of these series by standard Dlog Pad6 approximants again shows a zero 
on the negative real z2 axis (i.e. imaginary I) so that 

&,(z) = (I;2-Z"Zn(Z,. (32) 

We give estimates of x ; ~  in table 2. The Dlog Pad6 approximants also identify the 
physical critical point and exponent, consistent with the spin-wave predictions, hut 
with poor accuracy. Assuming these values we obtain estimates of the amplitudes 
A,, by forming the series for (1 - ~~) " -~ /~& , , ( z ) ,  transforming to the variable 
6 = 1 - (1 - I ~ ) ~ / ~ ,  and integrating the resulting Dlog Pad6 approximants. The 
estimates of A, are also shown in table 2 (for n 2 7, the series are too short to get 
reliable estimates). 

3.3. Spin- $ Heisenberg antiferromagnet with erternal perpendicular magnetic field 

This system is described by the following Hamiltonian: 

The limit x = 1 corresponds to the isotropic Heisenberg antiferromagnet with 
uniform magnetic field. In order to calculate the staggered magnetization A4 and 
staggered parallel susceptibility x, we need to include an extra term 

in the above Hamiltonian. 

and y: 
Each of these quantities k expressed as a double power series in the variables 2 

E,= E,,"z"yn M =  M,,,z'yj x =  x m + z m y n  (35) 
m.n=ll m,lL=U m,IL=U 

with the coefficients listed in table 4 through order 12 in y and through order 10-6 
in I, depending on the order of y. Only even powers of y occur. The calculations 
involve the same linked-cluster data as used for the Ising model in subsection 3.1. 
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In this case we have not considered an I grouping of the series. The columns in 
table 4 give series in I for the quantities 

which represent fieldderivatives of Eo, M and x .  The series for &,(I), t 1 ( z ) ,  
M , ( I )  and %"(I) agree with our previous results (Zheng et al 1991). 

Analysis of the series for & ( I ) ,  M , ( z )  and 55, by Dlog Pad6 approximants 
again show a zero near the origin, but on the positive real I axis. The zero occurs 
in the series with n = 2,6,10 but not for n = 4,8,12. We do not understand the 
significance of this. The locations of the zero points are shown in table 5. 

Table 5. Ihe xm point t: and the &tical index an, ertimated by analysing the series 
En, M, and T, for the Heiwnterg antiferromagnet wilh an external perpendicular 
magnetic field. 

2; 0.68(3) 0.249(2) 0.158(3) 
Oin 2.2(2) 4.6(4) 7.0(4) 10.5(15) 

- - - - - 
x2 X4 x6 X8 x 10 
0.374(2) 0.235(3) 0.17(2) 

m" 3.3(4) 6.0(4) 8.5(15) 11.7(7) 

In this case we expect physical critical points at both 2 = -1 and z = 1. At 
I = -1, spin-wave theoly (Zheng et a1 1991) predicts that the functions diverge: 

& ( I ) ,  M , ( I ) ,  T i , (%)  - (1 + I ) -*" n i t 0  (37) 

hut estimates of the exponent a, are not known except for C,(z), for which a, = 1. 
The Dlog Pad6 approximants show the singularity at z = -1 but with low 

precision. Assuming this value estimates for the exponents an can be obtained, 
and are also shown in table 5. These appear to increase linearly with n, suggesting a 
scaling relation with a gap cxponent, as in subsection 3.1. 

Near the other critical point z = 1 the functions are not expected to diverge. The 
series are difficult to analyse at this point. Using the method of Zheng et al (1991) 
we can obtain the foiiowing estimate: 

E u ( l , y )  = -0.6693(1) - 0.0659(1O)yz - 0.0103(4)y4 + 0.00045(9)y6 + 0(y8).(38) 
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4. Summary and discussion 

We have developed a technique for deriving two-parameter series expansions for 
the ground-state energy and other ground-state properties of quantum spin systems 
involving two perturbing terms. This is an extension of our previous work with one 
parameter linkedcluster expansions. 

The technique should be applicable to a number of interesting and incompletely 
understood systems, notabiy antiferromagnets with further-neighbour interactions. We 
are currently investigating such models. 

As somewhat simpler applications of the method we have obtained two-parameter 
series for three models on the square lattice: 

(i) the quantum Ising model with an external magnetic field, 
(ii) the S = Heisenberg antiferromagnet (XXZ model) with an external 

(iii) the S = $ Heisenberg antiferromagnet with an external perpendicular 

The series represent substantial new results for these models. 
Analysis of the series has revealed, in most cases, a zero point near the origin, 

with the location and exponent (= 1) obtainable to very high accuracy. We do not 
understand the origin and significance of this. When the zero point is removed 
appropriately, the resulting series show behaviour consistent with scaling and spin- 
wave predictions, although the precision of estimates of critical parameters is only 
fair. 

J Oitmaa and Zheng Weihong 

staggered parallel magnetic field, and 

magnetic field. 

Acknowledgments 

This work forms parts of a research project supported by a grant from the Australian 
Research Council. We thank Professor C J Hamer for discussions which have 
mntributed to this work. 

References 

Domb C 1974 Phaw ' i i m i t i m  md Cdical Phenomeno voI 3. ed C Domb and M S Green (New York 

Bsam J W and Hunter D L 1968 1 Phys C: Solid Srafe Phys 1 392 
Gelfand M P, Singh R R P and Huse D A 1990 J SIoL Pbs. 59 1093 
Guttmann A J 1989 Phase 'iiansiAom md Critical Phenomena MI 13, ed C Domb and J kbowitz  (New 

Hamer C J, Oilmaa J and Zheng W H 1991 Phys. REV B 43 10789 
- 1992a 1 Phys. A: Moth Gor to be published 
- 1992b Php Ro? D submilled 
He H X, Hamer C J and Oitmaa J 1990 1 Phys. A: Morh. Gen. U 1775 
Marland L G 1981 1 Phys, A: Mmh. Gen 14 2047 
Nickel B G 1980 unpublished 
Oilmaa 1, Hamer C J and Zheng W H 1991 1 Phys. A: Moth. Gen. 24 2863 
Singh R R e Gelfand M P and H u e  D A 1988 Phys. Rru Lm 61 2482 
Stanley H E 1971 Inwoduaion 10 Phase PansiIionc md Critical Phenomena (Oxford Ciarendon) 
Zheng W H. Oitmaa J and Hamer C J 1991 Phys. Rev B 43 a 2 1  

Academic) 

York Academic) 


